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Abstract— Ultra-wideband (UWB)-vision fusion localization
has achieved extensive applications in the domain of multi-
agent relative localization. The challenging matching problem
between robots and visual detection renders existing methods
highly dependent on identity-encoded hardware or delicate
tuning algorithms. Overconfident yet erroneous matches may
bring about irreversible damage to the localization system.
To address this issue, we introduce Mr. Virgil, an end-
to-end learning multi-robot visual-range relative localization
framework, consisting of a graph neural network for data
association between UWB rangings and visual detections, and
a differentiable pose graph optimization (PGO) back-end.
The graph-based front-end supplies robust matching results,
accurate initial position predictions, and credible uncertainty
estimates, which are subsequently integrated into the PGO
back-end to elevate the accuracy of the final pose estimation.
Additionally, a decentralized system is implemented for real-
world applications. Experiments spanning varying robot num-
bers, simulation and real-world, occlusion and non-occlusion
conditions showcase the stability and exactitude under various
scenes compared to conventional methods. Our code is available
at: https://github.com/HiOnes/Mr-Virgil.

I. INTRODUCTION

Relative localization is fundamental to multi-robot appli-
cations involving drone swarms, rescue missions and explo-
ration tasks. One straightforward method to obtain relative
estimation is the transformation of robots’ global states
measured by external devices such as global positioning
system (GPS) [1], [2], real-time kinematic positioning system
(RTK) [3], motion capture system (MCS) [4] and multi-
fixed-anchor UWB system [5]. Due to the strong reliance
on external infrastructure and the workspace, such solutions
cannot be directly applicable to unfamiliar scenes.

To enhance scalability and accuracy, local odometry and
mutual observations are integrated into the multi-agent sys-
tems, among which visual and UWB system [6]–[9] serves
as typical representatives. Visual images offer neighbor ob-
servations and can be leveraged for ego-motion estimation.
UWB provides omnidirectional and occlusion-resistant rang-
ing measurements. However, the noisy UWB signals [10]–
[12] and the drifting nature of visual odometry (VO) impose
high demands on the fusion manner of multimodal informa-
tion. Moreover, the visual detection targets are anonymous,
rendering the correspondences between visual detection and
UWB range a challenging data association problem. In order
to address this, CREPES [6] adopts active infrared (IR)
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LEDs and an IR fish-eye camera to achieve identity extrac-
tion, while IR communication makes time synchronization
quite cumbersome. Apart from the ID-encoded hardware ap-
proaches [6], [13], [14], many researches adhere to detection-
based paradigm [7]–[9], which generates raw matches from
visual detection bounding boxes, followed by hand-crafted
rule-based post-processing. In general, these methods as-
sume the resultant matches are correct and hard, making
the downstream optimization fragile and irrecoverable when
matching errors occur. Given the complexity of drone swarm
formations, the ambiguity of robots and detection targets
remains a challenging issue in multi-agent systems.

To overcome the aforementioned challenges of matching
aliasing, accurate uncertainty estimates should be provided
alongside data association, enabling soft constraints for
subsequent optimization. Additionally, matching uncertainty
should be informed by the collective structure of the multi-
robot formation, rather than being limited to pairwise similar-
ity. Beyond that, in multi-robot systems, the number of robots
and visual mutual observations frequently varies, raising
demand for the flexibility of the matching architecture.

In this paper, we propose Mr. Virgil, an end-to-end multi-
robot visual-range relative localization system. For the front-
end network, to accommodate any number of drones and
visual observations, we harness the graph neural network
(GNN), which has exhibited remarkable performance in the
field of image feature matching [15], [16]. The GNN and
the differentiable Sinkhorn algorithm [17]–[19] are utilized
to solve the data association problem, yielding matching and
uncertainty estimations with a global perspective. To super-
vise covariance, a Maximum Likelihood (ML) loss is applied
to the output of the front-end network. The covariance is also
incorporated as weights in the PGO back-end, enabling end-
to-end learning using gradients from localization errors. The
differentiable PGO back-end is employed for joint optimiza-
tion and its gradient back-propagates to facilitate learning
of front-end network. To achieve real-time performance in
real-world applications, we also implement a decentralized
system based on Robot Operating System (ROS), LibTorch
and Ceres Solver. Overall, our major contributions are as
follows:

• We propose an end-to-end decentralized multi-robot rel-
ative localization system, comprising a learnable front-
end for data association and a differentiable PGO back-
end.

• We present a GNN-based match network for multi-
robot data association, realizing precise matching and
reasonable uncertainty estimation, with the ability to
handle an arbitrary number of drones and detections.
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Fig. 1: The pipeline of our end-to-end multi-robot localization network. The GNN-based match net associates prior bearings
and detection bearings, predicting relative positions with covariances (uncertainties of matches and positions are represented
by light green lines and light pink circles). The differentiable PGO improves performance and propagates gradients back for
joint error correction.

• The robustness and accuracy of our method have been
verified in both simulated and real-world, occluded and
non-occluded scenarios. Our network demonstrates im-
pressive generalization ability in scenarios with limited
training data, variable robot counts, and sim-to-real
experiments.

II. RELATED WORKS

In this section, we discuss relative localization schemes
that function without external aids like GPS or RTK, which
offer superior adaptability to unfamiliar environments. Based
on the sensor types, we classify the previous works into
UWB-based methods and vision-based methods.

A. UWB-based Methods

A few works treat UWB as a stand-alone localization
solution, owing to its cost-effectiveness and ability to offer
omnidirectional ranging. For UWB systems that do not rely
on external fixed anchors, each robot estimates the positions
of the neighbors within its local frame, eliminating the need
for a unified global coordinate system. Zhou [20] estimated
the 3-DoF relative pose transformation between planar robots
by leveraging inter-robot distance measurements and dis-
placement estimation, requiring theoretical minimum UWB
measurements. Fishberg [21] investigated the impact of
multi-UWB tag antenna occlusion and interference on rang-
ing errors. By applying occlusion-related weighted factors to
nonlinear least squares, they achieved comparable accuracy
to systems relying on continuous odometry exchange. Since
only ranging information is shared, these methods incur a low
communication overhead, while their stabilities are easily
plagued by the noise-prone nature of UWB.

B. Vision-based Methods

The performance of the localization system can be im-
proved by the fusion of multimodal information such as
inertial data, visual detections [6]–[9], and odometry [22],
among which the UWB-vision-based approach is representa-
tive. As the identity of the visual tracking target is unknown,
a data association problem arises essentially. Such schemes
can be divided into hardware ID-encoded-based methods and

software matching-based methods depending on the ways to
extract the visual identity.

ID encoding methods necessitate the arrangement of spe-
cially designed hardware devices, such as infrared LEDs
[6], [14] and AprilTags [13]. Yan [14] equipped each drone
with a distinct active infrared coded target and a monocular
camera for detection, solving the relative transformation by
PnP algorithm and Kalman filter. CREPES [6] employed
programmed IR LED boards and IR cameras for encoding
and decoding the identity respectively, maintaining effective
relative localization in dark or partially occluded scenarios.
By employing customized platforms, such methods dimin-
ished incorrect detections, but it is still encumbered by the
short detection range and complex time synchronization of
hardware.

For better scalability, some researchers have chosen visual
detection and tracking algorithms, along with matching al-
gorithms for data association. Xu [7] utilizes convolutional
neural network (CNN) detectors and MOSSE trackers to
generate bearing information and retrieve the range from
the depth camera, yielding visual estimated positions. The
matching process involves the comparison between the po-
sitions of the final estimates and the visual estimates, as
well as a predefined threshold for outlier rejection. Based on
this work, their subsequent studies Omni-swarm [8] applied
the Hungarian algorithm to solve the multi-robot matching
issue and introduced a sparse map for global consistency.
However, the above approaches overlooked the uncertainty
estimation problem with the potential of erroneous matches.
Additionally, depth cameras are costly and vulnerable to
changes in lighting conditions, whereas our avenue employs
a bearing-only matching strategy.

III. METHODOLOGY

Our system overview is shown in Fig. 1, which mainly
consists of a graph match net (front-end) and a differen-
tiable PGO module (back-end). The GNN-based front-end
combines information from priors, camera detections and
UWB ranges, and the resulting 3-DoF position estimates and
covariances are incorporated into our differentiable back-end,
finally generating the 6-DoF state estimations.
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Fig. 2: The graph match net front-end architecture.

In this section, we first clarify our data association process
based on GNN. Second, we describe three different con-
straints in PGO. Third, we introduce various loss functions
for end-to-end training. Last, we illustrate the decentralized
system for real-world implementation.

A. Graph Match Front-end

UWB rangings and priors of UAV are ID-aware, while
visual detections are non-identified. Motivated by finding
keypoints correspondences in the area of image feature
matching, we solve the data association problem between
priors and detections in a bearing-only manner. Our network
comprises the attentional graph neural network for feature
aggregation, the Sinkhorn iteration for partial assignment,
and the multi-layer perceptron (MLP) for estimation of
positions and uncertainties. The architecture of our graph
match net is illustrated in Fig. 2.

Attentional graph neural network: A multi-layer graph
attention neural network is utilized to encode a set of UAV
bearing priors and a set of detection bearing outcomes, which
are connected by self-edges and cross-edges, contributing
to a deeper insight into the robot formation (intra-set) and
the similarities among detection candidates (inter-set). Each
bearing of priors and detections represents a graph node. We
use a shared MLP layer to project the 3-DoF bearings bi into
high-dimensional space, forming the initial node embeddings
(0)fi that guide the network to consider spatial information.

(0)fi = fencode(bi) (1)

The node embeddings are then aggregated through self-
attention and cross-attention, realizing comprehensive mes-
sage exchange between bearings of priors and detections.
Residual connections are used both within the layer and
between adjacent layers.

(l)fselfi =(l) fi +(l) fself ([
(l)fi || (l)mεself ])

(l+1)fi =(l) fselfi +(l) fcross([
(l)fselfi || (l)mεcross ])

(2)

where || denotes concatenation. (l)fi is the bearing embed-
ding of layer l. The message aggregation along self edges
εself and cross edges εcross are represented by (l)mεself and
(l)mεcross respectively. (l)fself and (l)fcross are MLPs, where
the weights differ across layers.

After message interaction through L GNN layers, the
bearing embeddings of priors fPi and detections fDj are
distinguishable and enriched with global information. P and
D denote the set of UAV priors and detections.

Partial assignment: The score matrix S ∈ RN×M can
be obtained by the similarities of GNN-aggregated bearing
embeddings. N and M refer to the number of drones and
the maximum number of camera observations, respectively.
Considering potential fake detection (the light blue drone
detection in Fig. 1), M is larger than N. The pairwise score
is computed by the dot-product:

Si,j =< fPi , fDj > (3)

In order for the network to learn to exclude mis-matching
cases caused by occlusion, out-of-view and false detec-
tions, the score matrix S is further augmented to S̄ ∈
R(N+1)×(M+1) by adding a dustbin row and a dustbin
column for unmatched bearings. A trainable parameter is
applied to represent the score of the bin row and column.

The optimal assignment can be solved by the Sinkhorn
algorithm, which is differentiable, enabling end-to-end train-
ing. After several iterations, the augmented score matrix S̄
is reallocated subject to the constraint that the sums of rows
and columns are equal to specific constant values.

The candidate match is derived according to the maximum
score in each row and column. A match is considered valid
only when the score exceeds a predefined threshold and
both bearings of UAV priors and visual detections mutually
consent to the match.

Position prediction: For each successfully matched UAV
prior i ∈ P , we construct a concatenated feature feati for
estimation of positions and covariances.

feati = [vrPosi || pPosi ||Si ||Vari] (4)

where vrPosi is the raw visual ranging position, calculated
by simply scaling the detection bearing bi ∈ R3 with the
UWB ranging di ∈ R. pPosi denotes prior position. Si comes
from the optimal matching score of row i from the score
matrix. Vari is determined by the matching probability of
the detection orientation.

With the input of raw estimate, pos prior, matching score
and variance, two MLPs are employed for positions and co-
variances prediction. Positions of unmatched drones remain
as the prior, with a large covariance assigned.

t̂i = fpos(feati), Σ̂i = fcov(feati) (5)

B. Differentiable PGO Back-end

To obtain high-precision 6-DoF poses, including the unob-
served drone states, we tightly fuse sensor inputs and mutual
state estimations between drones in the differentiable PGO
module. Define k as the reference robot, with the relative
poses of other robots to be optimized in the k coordinate
system defined as:

χ = [P̂k
1 , P̂

k
2 , ..., P̂

k
N ] (6)



where P̂k
i is the same as the transformation matrix[

R̂k
i t̂ki
0 1

]
, R̂k

i refer to the rotation matrix and t̂ki refer to

the translational vector. To find the optimal estimation χ∗,
we attempt to minimize the combined residuals:

χ∗ = argmin(
∑

(CM , CP , CR)) (7)

where CM , CP , CR are constraints of mutual state estima-
tions, pose priors and range measurements respectively.

Mutual state constraint: The mutual observation between
drone i and j forms a constraint edge. Since the front-end
network only predicts the position, we omit the constraints on
the rotation part and derive the error function in the following
form:

eM = tij − (R̂k
i )

T (̂tkj − t̂ki )

CM = eTM Σ̂−1
M eM

(8)

where Σ̂−1
M represents the information matrix, which is the

inverse of the covariance matrix, where the diagonal elements
are formed by the uncertainties predicted by the preceding
network.

Pose prior constraint: When the number of mutual ob-
servations decreases, the optimization problem may become
ill-conditioned, due to which we incorporate prior pose
constraints to avoid degradation.

eP = Pk
i − P̂k

i

CP = eTP Σ̂
−1
P eP

(9)

The diagonal entries of the covariance matrix Σ̂P are like-
wise predicted by the network.

UWB ranging constraint: The UWB measurements es-
tablish pairwise connections between drones in the cluster.

eR = dij− ∥ t̂ki − t̂kj ∥2
CR = eTRΣ̂

−1
R eR

(10)

where dij is the distance measurement between drone i and
j. The covariance of UWB ranging Σ̂R is predefined.

We use second-order Levenberg-Marquardt (LM) algo-
rithm and Cholmod sparse solver in Theseus [23] to solve
the nonlinear optimization problem. The gradient of each it-
eration is stored and backpropagated to facilitate the training
of the front-end network.

C. Loss Functions

To guide the network to produce robust matches, reliable
covariance distributions and accurate state estimations, three
different loss functions are applied in our training, balanced
by factors λ1, λ2:

L = LMatch + λ1LML + λ2LPose (11)

Match loss: For the matching item, we supervise the
augmented score matrix S̄ after Sinkhorn iterations:

LMatch = −
∑

(i,j)∈π

S̄i,j −
∑
i∈µ

S̄i,M (12)

where π is the set of matching bearings, µ denotes the set of
unmatched UAV priors, both of which come from the ground
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Fig. 3: Decentralized system diagram.

truth labels. The column M in S̄i,M represents the dustbin
column, storing the cases where camera observations are lost.
The first item encourages the net to amplify the scores of
correct matches, while the second term drives the network
to exclude incorrect ones.

Maximum likelihood loss: According to the form of a
multivariate Gaussian distribution, we define a negative log-
likelihood covariance loss as follows:

LML =
1

(N + 1) ∗N
∑

(i,j)∈S,j ̸=i

(λdetlog(det(Σ̂
i
j))

+ (tij − t̂ij)
T Σ̂i−1

j (tij − t̂ij))

(13)

where S is the set of UAV swarm, Σ̂i
j ∈ R3×3 is the pre-

dicted covariance matrix, t̂ij is the 3-DoF position estimate
of drone j with respect to drone i, while tij is the ground
truth.

Pose loss: Apart from the aforementioned two losses
directly applied to the front-end net outputs, we also define
the Mean Square Error (MSE) pose loss for final relative
localization after graph optimization:

LPose =
1

(N + 1) ∗N
∑

(i,j)∈S,j ̸=i

(∥ tij − t̂ij ∥2

+ λq ∥ qi
j − q̂i

j ∥2)
(14)

where t̂ij and q̂i
j denote the estimation of translation and

quaternion part, tij and qi
j are their corresponding ground

truths.

D. Decentralized System

For the purpose of high-performance deployment in real
environments, we have realized a decentralized system (Fig.
3). The system is built upon the ROS communication frame-
work, the graph match front-end network is implemented on
LibTorch, and the optimization back-end is solved by Ceres
Solver.

In the simulation experiments, the visual detection direc-
tion is computed based on the orientation and positional
relationship between two drones within the field of view.
In the physical experiments, we use the infrared hardware
module of CREPES for recognition (without ID extraction).
As drones usually fly at high speeds, we introduce pseudo
visual odometry (PVO) to aid in updating the relative pose
prior between consecutive frames, which is derived from the
ground truth with considerable noise. The relative pose priors



are updated by the PVO and the mutual state estimation
among other neighboring robots. Only the PVO and the
optimized relative poses in the local frames are shared among
the drones, leading to a low communication load.

IV. EXPERIMENT

We carry out experiments on both simulation datasets and
self-collected real-world datasets to verify the accuracy and
robustness of our proposed method, covering both line-of-
sight (LOS) and non-line-of-sight (NLOS) scenarios. The
details of our experiment datasets are listed in TABLE. I.

A. Experimental Settings and Datasets

A laptop equipped with a 13th Gen Intel Core i9-13900HX
CPU and Nvidia RTX 4060 GPU is used to train and
validate our neural network. We employ a 4-layer GNN
network to aggregate the bearing features. The number of
Sinkhorn iterations is set to 100. We use the Adam optimizer
for training, with a learning rate of 1e-4 and a weight
decay coefficient of 5e-4. The front-end network undergoes
pretraining to generate accurate estimates of positions and
uncertainties, which takes less than 50 epochs.

At train time, we add noise with a standard deviation of
0.1m along each axis to the ground truth position from 0.1
seconds earlier, indicating the pos prior. At test time, the
prior comes from the previous prediction plus the relative
odometry increment. In situations where all camera detec-
tions or UWB observations are unavailable, these instances
will be omitted during training, while for testing, the position
prior will be simply updated by odometry and fed into the
PGO, bypassing the graph match network.

Simulation scenes: We conduct simulation experiments
in a random forest environment filled with diverse obstacles
like trees. A group of drones in a circular formation traverses
the 70m × 30m × 3m forest. The simulated scenes with
varying numbers of robots are presented in Fig. 4. Each
UAV has a 180-degree field of view (FOV), and the visibility
is not only affected by occlusion but also influenced by
both the camera orientation of the observing drones and the
direction of the IR LEDs on the drones being observed. To
validate the robustness of our proposed matching method,
we also randomly generate erroneous visual detections with
a probability exceeding 40%.

Real-world scenes: In the physical experiments, we
adopted the same hardware as CEREPS for data acquisition,
while excluding its ID extraction and IMU modules. The
camera features a fisheye lens with a 185-degree FOV, and
the UWB module is from the NoopLoop DW1000 series. As
the experiments are carried out indoors, we employ MCS to
obtain the ground truth. The effectiveness of our proposal is
demonstrated in both occlusion and non-occlusion scenarios.

TABLE I: Experiment Datasets.

Dataset Drone Num Detection Num Occlusion Traj Len
Sim-Forest 4/8/12/16 0∼8/12/16/20 ✓ 52.23m
Real-LOS 5 0∼8 ✗ 20.64m

Real-NLOS 5 0∼8 ✓ 20.63m

B. Baselines

We choose two baselines for comparison with our ap-
proach.

PVO: The odometry of each robot is derived by adding
noise perturbations to the ground truth. The noise consists
of a translation disturbance with a standard deviation of
0.1m and a rotation disturbance with a standard deviation
of 1.0 degree, applied every 0.1s of odometry. Note that the
noise magnitude is consistent with that of the other PVO-
aided methods. The relative pose estimates calculated by the
odometry are further passed into the PGO for optimization,
with no inter-robot observations involved.

Simple Match: The data association is performed ac-
cording to the closest direction between the bearings of
UAV priors and visual detections. A tunable threshold is
used to discard matches with large directional differences.
For successfully matched drones, their relative positions are
obtained by multiplying the camera directions with the UWB
rangings. The covariances have a negative correlation with
the cosine similarities of the matching bearings, contributing
to more robust optimization compared to hard matching. This
method also leverages PVO to update the state priors and
enhances the overall accuracy through graph optimization.

C. Multi-Robot Localization Accuracy

For ease of visualization, estimated trajectories of other
drones are transformed by adding the relative poses on
the ground truth of drone 0. The estimations under ideal
conditions are shown in Fig. 5(a), achieving the RMSE
error of 3.9cm. In actual conditions, odometry suffers from
accumulated drift, and the estimations with considerable
noise added to the PVO are presented in Fig. 5(b) and
Fig. 6. We evaluate 3D Relative Positioning Error (RPE)
by RMSE in TABLE. II and the RPE of dataset Real-NLOS
with respect to each robot estimated by our approach and
Simple Match are depicted by heat map in Fig. 7. Notably,
all error metrics are calculated in the local frame of each
robot, while trajectories of in the world coordinate frame are
used only for visualization.

Resistance to noise interference: The noise we introduce
into the odometry is substantially greater than the errors of
most state-of-the-art visual odometry methods. As shown
in TABLE. II, PVO quickly diverges in all three scenarios,
leading to large errors under the influence of noise. With the
same noise level, the predicted trajectories of our approach
exhibit some fluctuation when inter-observations decrease,
but it quickly stabilizes once visibility is regained, maintain-
ing valid and robust localization throughout the whole flight.

TABLE II: RPE evaluation under simulated and real-world
datasets. Numbers in parentheses following the scene name
denote the quantities of robots. Values in bold are the best.

Method
Position RMSE (m)

Sim-Forset(16) Real-LOS(5) Real-NLOS(5)
PVO 6.067 2.243 1.445

Simple Match 0.198 0.108 0.498
Ours 0.144 0.090 0.129
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Fig. 6: The estimated trajectories of other 4 drones under
noisy circumstances (PVO with big noise) in real-world
environment.

Occlusion resistance: As indicated in TABLE. II, the
Simple Match based on the closest bearing matching and
the fixed threshold filter achieves comparable performance to
our proposed method in non-occlusion environments (Real-
LOS). However, a predefined threshold necessitates a trade-
off between precision and recall rate. A lenient threshold
parameter may result in more false matches, while a strict
threshold reduces the matching recall rate. In occlusion sce-
narios (Sim-Forest and Real-NLOS), the Simple Match has
fewer valid matches, relying solely on the noisy odometry
to continuously update the state priors, causing significant
performance degradation. In contrast, our graph match net-
work focuses on the overall similarity between the set of
UAV priors and visual detections in a global view, producing
more successful matches and exhibiting stronger resistance
to occlusion.
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Fig. 7: The RPE heat map w.r.t each drone on Real-NLOS.

D. Ablation Study

In this section, we will examine the strengths of front-end
learning graph networks compared to Simple Match, as well
as the enhancement of accuracy achieved through back-end
graph optimization.

Graph match front-end: We evaluate the graph match-
ing network in comparison with the Simple Match under
different threshold settings, measuring the matching preci-
sions, recall rates, and F1 scores across multiple datasets.
All metrics are presented in Table. III. Simple Match@0.9
indicates that only matches with a cosine similarity greater
than 0.9 between the UAV priors and the detection bearings
are considered valid. Likewise, Simple Match@0.99 stands
for a stricter threshold parameter. The F1 score takes both
the matching precision and recall rate into account, and our
proposed method achieves the highest F1 score across all



TABLE III: Matching results on simulated and real-world datasets. Numbers in parentheses following the scene name denote
the quantities of robots. F1 scores in bold are the best.

Method
Datasets

Sim-Forset (8) Sim-Forset (16) Real-LOS (5) Real-NLOS (5)
P R F1 P R F1 P R F1 P R F1

Simple Match@0.9 76.49% 99.45% 0.865 58.96% 97.54% 0.735 88.74% 98.85% 0.935 88.59% 99.78% 0.939
Simple Match@0.99 95.11% 98.50% 0.968 87.28% 95.94% 0.914 97.32% 92.41% 0.948 99.11% 96.14% 0.976

Ours 97.87% 98.58% 0.982 95.92% 91.14% 0.935 96.15% 98.33% 0.972 97.47% 99.51% 0.985

Ours Simple Match @0.99 Simple Match @0.9
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Fig. 8: Data association cases. We perform a comparison
between our graph matching network and Simple Match
with distinct filtering thresholds. In challenging Case C, the
uncertainty of the matches is represented by pink spheres,
where a larger radius indicates a higher uncertainty.

datasets, which highlights that our model strikes a good
balance between incorporating anonymous observations and
excluding incorrect matches. A few representative cases are
displayed in Fig. 8. In Case A, there are four drones to
be matched and three camera observations. Our method
successfully matches all observed drones and excludes the
one that is not observed, while Simple Match@0.99 rejects
all matches and Simple Match@0.9 improperly associates
two different drones with the same detection bearing based
on the closest direction matching. A similar situation also
occurs in Case B, where there are three valid camera ob-
servations and one erroneous camera detection. In the more
complex and challenging Case C, all three methods encounter
two incorrect matches, while our approach applies higher
uncertainty to these mismatches, reducing their detrimental
effect on the subsequent optimization process.

PGO back-end: To quantify the precision improvement
with the incorporation of PGO, we conduct ablation experi-
ments in a centralized inference strategy, ensuring identical
communication conditions. The PVO is perturbed by noise
and camera observations are interfered with random fake de-
tections. The results listed in Table. IV demonstrate that the
incorporation of PGO efficiently mitigates the localization

TABLE IV: Ablation results of PGO. The errors are evalu-
ated by RPE RMSE.

Module Scene
Simple Learned PGO Sim-Forest(16) Real-LOS(5) Real-NLOS(5)

✓ ✗ ✗ 1.572 ↓46.8%
0.293 ↓42.0%

0.453 ↓55.8%
✓ ✗ ✓ 0.836 0.170 0.200
✗ ✓ ✗ 1.280 ↓89.2%

0.217 ↓32.9%
0.247 ↓35.2%

✗ ✓ ✓ 0.138 0.126 0.160
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Fig. 9: The decrease of combination loss and RPE w.r.t
number of training scenes.

error of either Simple Match or our learned front-end by
over 32% across all scenarios.

E. Network Generalization Ability Analysis

In this section, we will investigate the generalization of
the neural network across varying training set sizes, different
numbers of robots, and simulation-to-real model transfer
experiments.

Training scene numbers: We use varying numbers of
scenes for training, assessing its inference performance in
real-world occlusion environments. The combined loss and
RPE error are presented in Fig. 9. The model reaches
performance comparable to the optimal model after being
trained on only two scenes.

Robot numbers: We train and test in simulated scenes
with different numbers of robots, validating the model’s
generalization performance across varying robot nodes. To
eliminate the differences in training set size caused by
varying numbers of robots, we scale the training size by
corresponding multiples. For example, the model for 16
robots is trained with 4 scenes, while the model for 8 robots
is trained with 8 scenes. As illustrated by the error box plot
in Fig. 10, networks trained with a larger number of robots
achieve higher accuracy on all datasets. An increased number
of robots enables the GNN to learn more intricate topological
structures, offer more reasonable uncertainty estimates, and
generalize to scenes with different robot quantities.



Fig. 10: RPE box plot of varying robot numbers experiment.
The whisker length in the box plot is defined as 0.5 times
the interquartile range (IQR).

TABLE V: The accuracy of simulation model and real model
on real-world scenarios.

Model
Training Setting Position RMSE (m)

Scene Num of Robot / Cam Real-LOS Real-NLOS
Sim Sim-Forest 16 / 20 0.098 0.136
Real Real-world 5 / 8 0.090 0.129

Sim-to-real: To evaluate the network’s adaptability from
simulation models to real-world data, the simulation model
trained on Sim-Forest sequences is validated in real-world
occlusion and non-occlusion environments. The accuracy gap
between the simulation model and the real model is less than
1cm, as shown in Table. V.

V. CONCLUSIONS

In this work, we propose an end-to-end learning visual-
range framework in multi-agent relative localization system.
The learnable front-end solves the data association problem
through multiplex attentional graph neural network, facil-
itating reliable matching and uncertainty prediction. The
differentiable PGO back-end collects mutual estimations and
boost the overall precision.

In future work, we will consider replacing PVO with
a real visual odometry system and integrating multi-frame
observations into the network and optimization framework,
which will further enhance the system’s robustness and
adaptability.
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